Computational intelligence for heart disease diagnosis: A medical knowledge driven approach

نویسندگان

  • Jesmin Nahar
  • Tasadduq Imam
  • Kevin Tickle
  • Yi-Ping Phoebe Chen
چکیده

This paper investigates a number of computational intelligence techniques in the detection of heart disease. Particularly, comparison of six well known classifiers for the well used Cleveland data is performed. Further, this paper highlights the potential of an expert judgment based (i.e., medical knowledge driven) feature selection process (termed as MFS), and compare against the generally employed computational intelligence based feature selection mechanism. Also, this article recognizes that the publicly available Cleveland data becomes imbalanced when considering binary classification. Performance of classifiers, and also the potential of MFS are investigated considering this imbalanced data issue. The experimental results demonstrate that the use of MFS noticeably improved the performance, especially in terms of accuracy, for most of the classifiers considered and for majority of the datasets (generated by converting the Cleveland dataset for binary classification). MFS combined with the computerized feature selection process (CFS) has also been investigated and showed encouraging results particularly for NaiveBayes, IBK and SMO. In summary, the medical knowledge based feature selection method has shown promise for use in heart disease diagnostics. 2012 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Computational Intelligence Method for Effective Diagnosis of Heart Disease using Genetic Algorithm

In recent years improvement of new and effective medical domain applications has vital role in research. Computational Intelligence Systems (CIS) has profound influence in the enlargement of these effective medical field applications and tools. One of the prevalent diseases that world facing is heart disease. The Computational Intelligence Systems uses input clinical data from different knowled...

متن کامل

Computational Intelligence for Medical Knowledge Acquisition with Application to Glaucoma

This paper presents an approach that integrates computational intelligence/soft computing paradigms with clinical investigation methods and knowledge. Computational intelligence methods (including fuzzy logic, neural networks and genetic algorithms) deal in a suitable way with imprecision, uncertainty and partial truth. These aspects can be found quite often in practical medical activities and ...

متن کامل

Using Combined Descriptive and Predictive Methods of Data Mining for Coronary Artery Disease Prediction: a Case Study Approach

Heart disease is one of the major causes of morbidity in the world. Currently, large proportions of healthcare data are not processed properly, thus, failing to be effectively used for decision making purposes. The risk of heart disease may be predicted via investigation of heart disease risk factors coupled with data mining knowledge. This paper presents a model developed using combined descri...

متن کامل

A New Knowledge-Based System for Diagnosis of Breast Cancer by a combination of the Affinity Propagation and Firefly Algorithms

Breast cancer has become a widespread disease around the world in young women. Expert systems, developed by data mining techniques, are valuable tools in diagnosis of breast cancer and can help physicians for decision making process. This paper presents a new hybrid data mining approach to classify two groups of breast cancer patients (malignant and benign). The proposed approach, AP-AMBFA, con...

متن کامل

Active subgroup mining: a case study in coronary heart disease risk group detection

This paper presents an approach to active mining of patient records aimed at discovering patient groups at high risk for coronary heart disease (CHD). The approach proposes active expert involvement in the following steps of the knowledge discovery process: data gathering, cleaning and transformation, subgroup discovery, statistical characterization of induced subgroups, their interpretation, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2013